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Transformed to Tundra

▪ An ecosystem consists of all the organisms living in 

a community, as well as the abiotic factors with 

which they interact

▪ Entire ecosystems can be affected by changes in a 

single component

▪ For example, the introduction of the arctic fox onto 

islands in Alaska and Russia resulted in a 

transformation from grassland to tundra ecosystem 
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▪ Ecosystems range from a microcosm, such as 

space under a fallen log or desert spring, to a large 

area, such as a lake or forest
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▪ Ecosystem dynamics involve two main processes: 

energy flow and chemical cycling

▪ Energy flows through ecosystems, whereas matter 

cycles within them
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Concept 42.1: Physical laws govern energy flow and 
chemical cycling in ecosystems

▪ Ecologists study the transformations of energy 

movement of chemical elements within ecosystems
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Conservation of Energy

▪ Laws of physics and chemistry apply to 

ecosystems, particularly energy flow

▪ The first law of thermodynamics states that energy 

cannot be created or destroyed, only transferred or 

transformed

▪ Energy enters an ecosystem as solar radiation, is 

transformed into chemical energy by photosynthetic 

organisms, and is dissipated as heat
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▪ The second law of thermodynamics states that 

every exchange of energy increases the entropy of 

the universe

▪ In an ecosystem, energy conversions are not 

completely efficient, and some energy is always 

lost as heat

▪ Continuous input from the sun is required to 

maintain energy flow in Earth’s ecosystems
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Conservation of Mass

▪ The law of conservation of mass states that 

matter cannot be created or destroyed
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Conservation of Mass

▪ Chemical elements are continually recycled within 

ecosystems

▪ Inorganic elements are taken up by autotrophs and 

transformed into biomass

▪ Organic compounds are transferred to heterotrophs 

as food

▪ Inorganic elements are released through metabolism 

and decomposition
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▪ Elements can be gained or lost from a particular 

ecosystem

▪ For example, in a forest ecosystem, most nutrients 

enter as dust or solutes in rain and are carried away 

in water

▪ Ecosystems are open systems, absorbing energy 

and mass and releasing heat and waste products
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▪ Ecosystems can be sources or sinks for particular 

elements

▪ If a mineral nutrient’s outputs exceed its inputs, it 

will limit production in that system
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Energy, Mass, and Trophic Levels

▪ Autotrophs build molecules themselves using 

photosynthesis or chemosynthesis as an energy 

source

▪ Heterotrophs depend on the biosynthetic output of 

other organisms
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▪ Energy and nutrients pass from primary producers 

(autotrophs) to primary consumers (herbivores) 

to secondary consumers (carnivores) to tertiary 

consumers (carnivores that feed on other 

carnivores)
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▪ Detritivores, or decomposers, are consumers that 

derive their energy from detritus, nonliving organic 

matter

▪ Prokaryotes and fungi are important detritivores

▪ Decomposition connects all trophic levels; 

detritivores are fed upon by secondary and tertiary 

consumers
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Figure 42.4
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Concept 42.2: Energy and other limiting factors 
control primary production in ecosystems

▪ In most ecosystems, primary production is the 

amount of light energy converted to chemical 

energy by autotrophs during a given time period

▪ In a few ecosystems, chemoautotrophs are the 

primary producers
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Ecosystem Energy Budgets

▪ The extent of photosynthetic production sets the 

spending limit for an ecosystem’s energy budget
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The Global Energy Budget

▪ The amount of solar radiation reaching Earth’s 

surface limits the photosynthetic output of 

ecosystems

▪ Only a small fraction of solar energy actually strikes 

photosynthetic organisms, and even less is of a 

usable wavelength
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Gross and Net Production

▪ Total primary production is known as the 

ecosystem’s gross primary production (GPP)

▪ GPP is measured as the conversion of chemical 

energy from photosynthesis per unit time
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▪ Net primary production (NPP) is GPP minus 

energy used by primary producers for “autotrophic 

respiration” (Ra)

▪ NPP is expressed as

▪ Energy per unit area per unit time [J/(m2  yr)], or

▪ Biomass added per unit area per unit time 

[g/(m2  yr)]

NPP = GPP − Ra
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▪ NPP represents the energy that will be available to 

consumers in the ecosystem
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▪ NPP is the amount of new biomass added in a 

given time period

▪ Standing crop is the total biomass of photosynthetic 

autotrophs at a given time

▪ Standing crop is not a reliable indicator of NPP
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▪ Satellites can be used to estimate ecosystem 

productivity by detecting reflected light 

▪ Vegetation reflects more near-infrared radiation 

than visible radiation
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Figure 42.5
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▪ Ecosystems vary greatly in NPP and contribution to 

the total NPP on Earth

▪ Tropical rain forests, estuaries, and coral reefs are 

among the most productive per unit area

▪ Open oceans are relatively unproductive per unit 

area, but contribute much to global NPP due to their 

size
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▪ Net ecosystem production (NEP) is a measure of 

the total biomass accumulation during a given 

period

▪ NEP is gross primary production minus the total 

respiration of all organisms (producers and 

consumers) in an ecosystem (RT)

NEP = GPP − RT
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▪ NEP is estimated by comparing the net flux of CO2

and O2 in an ecosystem

▪ These molecules are connected by photosynthesis

▪ The release of O2 by a system is an indication that it 

is also storing CO2
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Primary Production in Aquatic Ecosystems

▪ In marine and freshwater ecosystems, both light 

and nutrients control primary production
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Light Limitation

▪ Depth of light penetration affects primary production 

in the photic zone of an ocean or lake

▪ About half the solar radiation is absorbed in the first 

15 m of water, and only 5–10% reaches a depth of 

75 m
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Nutrient Limitation

▪ More than light, nutrients limit primary production in 

oceans and lakes

▪ A limiting nutrient is the element that must be 

added for production to increase in an area

▪ Nitrogen and phosphorous most often limit marine 

production

▪ For example, nitrogen limits phytoplankton growth off 

the south shore of Long Island, New York
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Figure 42.7
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▪ Several large areas of the ocean have low 

productivity despite high nitrogen concentrations

▪ Nutrient enrichment experiments indicate that iron, 

a micronutrient, can be limiting in some marine 

ecosystems
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Table 42.1
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▪ Upwelling of nutrient-rich waters from the sea floor 

to the surface increases primary production in some 

areas
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▪ The addition of large amounts of nutrients to lakes 

causes eutrophication 

▪ Large populations of phytoplankton are supported in 

eutrophic lakes, but individual life spans are short

▪ Decomposition rates increase, causing oxygen 

depletion and the subsequent loss of fish species
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▪ In lakes, phosphorus limits cyanobacterial growth 

more often than nitrogen

▪ Phosphate-free detergents are now widely used to 

reduce nutrient pollution of lakes
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Primary Production in Terrestrial Ecosystems

▪ At regional and global scales, temperature and 

moisture are the main factors controlling primary 

production in terrestrial ecosystems
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▪ Mean annual precipitation and evapotranspiration, 

the total amount of water transpired by plants and 

evaporated from the landscape, are useful 

predictors of NPP

▪ Evapotranspiration increases with temperature and 

the amount of solar radiation
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Figure 42.8
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Nutrient Limitations and Adaptations That Reduce 
Them

▪ Soil nutrients also limit primary production

▪ Globally, nitrogen is the most limiting nutrient in 

terrestrial ecosystems

▪ Phosphorus can also be a limiting nutrient, 

especially in older soils and soils with a basic pH
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▪ Various adaptations help plants access limiting 

nutrients from soil

▪ Some plants form mutualisms with nitrogen-fixing 

bacteria

▪ Many plants form mutualisms with mycorrhizal fungi

▪ Roots have root hairs that increase surface area

▪ Many plants release enzymes that increase the 

availability of limiting nutrients
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Concept 42.3: Energy transfer between trophic levels 
is typically only 10% efficient

▪ Secondary production of an ecosystem is the 

amount of chemical energy in food converted to 

new biomass during a given period of time
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Production Efficiency

▪ Herbivores use only about one-sixth of the total 

energy stored in vegetation to produce new 

biomass
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▪ An organism’s production efficiency is the fraction 

of energy stored in food that is used for secondary 

production

▪ Net secondary production is the energy used for 

growth and reproduction

▪ Assimilation is the total energy consumed and used 

in growth, reproduction, and respiration 
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Figure 42.9
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▪ Birds and mammals have production efficiencies in 

the range of 13% due to the high cost of 

endothermy

▪ Fish have production efficiencies around 10%

▪ Insects and microorganisms have efficiencies of 

40% or more

© 2016 Pearson Education, Inc.



Trophic Efficiency and Ecological Pyramids

▪ Trophic efficiency is the percentage of production 

transferred from one trophic level to the next, on 

average about 10%

▪ Trophic efficiencies take into account energy lost 

through respiration and feces, as well as energy 

stored in unconsumed portions of food 
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▪ Trophic efficiency is multiplied over the length of a 

food chain

▪ Approximately 0.1% of chemical energy fixed by 

photosynthesis reaches a tertiary consumer

▪ The loss of energy with each transfer in a food 

chain is represented by an energy pyramid
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Figure 42.10
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▪ In a biomass pyramid, each tier represents the 

standing crop (total dry mass of all organisms) in 

one trophic level

▪ Most biomass pyramids show a sharp decrease at 

successively higher trophic levels
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Figure 42.11
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▪ Certain aquatic ecosystems have inverted biomass 

pyramids: primary consumers outweigh producers

▪ Phytoplankton (producers) are consumed quickly by 

zooplankton, but they reproduce faster and can 

support a larger biomass of zooplankton
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Figure 42.11
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Figure 42.11
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Figure 42.UN01-1
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▪ Dynamics of energy flow in ecosystems have 

important implications for the human population

▪ Eating meat is a relatively inefficient way of tapping 

photosynthetic production

▪ Worldwide agriculture could feed many more people 

if humans ate only plant material

© 2016 Pearson Education, Inc.



Concept 42.4: Biological and geochemical processes 
cycle nutrients and water in ecosystems

▪ Life depends on the recycling of essential chemical 

elements

▪ Decomposers play a key role in chemical cycling

© 2016 Pearson Education, Inc.



Decomposition and Nutrient Cycling Rates

▪ The rate of nutrient cycling varies greatly among 

ecosystems, mostly as a result of decomposition 

rate

▪ Decomposer growth and decomposition rate are 

controlled by factors including temperature, 

moisture, and nutrient availability
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Figure 42.12
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Figure 42.12-1
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Figure 42.12-2
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▪ Rapid decomposition results in relatively low levels 

of nutrients in the soil

▪ For example, in a tropical rain forest, material 

decomposes rapidly, and most nutrients are tied up 

in trees and other living organisms

▪ Decomposition is slow when soils are too dry or 

very wet and low in oxygen
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▪ Decomposition is slow in the anaerobic muds of 

aquatic ecosystems

▪ Sediments constitute a nutrient sink; aquatic 

ecosystems require exchange between bottom 

layers and surface water to be highly productive
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Biogeochemical Cycles

▪ Nutrient cycles are called biogeochemical cycles 

because they involve both biotic and abiotic 

components 

▪ Biogeochemical cycles may be global or local
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▪ Nutrients that have a gaseous phase (carbon, 

oxygen, sulfur, and nitrogen) enter the atmosphere 

and cycle globally

▪ Heavier elements (phosphorus, potassium, and 

calcium) have no gaseous phase

▪ They cycle locally in terrestrial systems but more 

broadly when dissolved in aquatic systems
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The Water Cycle

▪ Biological importance: Essential to all organisms

▪ Forms available to life: Primarily liquid, though 

some can harvest water vapor 

▪ Reservoirs: The oceans contain 97% of the 

biosphere’s water; 2% is in glaciers and polar ice 

caps, and 1% is in lakes, rivers, and groundwater

▪ Key processes: Evaporation, transpiration, 

condensation, precipitation, and movement through 

surface and groundwater
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Figure 42.13-1
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The Carbon Cycle

▪ Biological importance: Carbon-based organic 

molecules are essential to all organisms

▪ Forms available to life: Photosynthetic organisms 

convert CO2 to organic molecules that are used by 

heterotrophs

▪ Reservoirs: Fossil fuels, soils and sediments, 

solutes in oceans, plant and animal biomass, the 

atmosphere, and sedimentary rocks
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▪ Key processes: CO2 is taken up by the process of 

photosynthesis and released into the atmosphere 

through cellular respiration

▪ Volcanic activity and the burning of fossil fuels also 

contribute CO2 to the atmosphere
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Figure 42.13-2
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The Nitrogen Cycle

▪ Biological importance: Nitrogen is a part of amino 

acids, proteins, and nucleic acids and often limits 

primary productivity

▪ Forms available to life: Plants can use ammonium 

(NH4 
+), nitrate (NO3 

), and amino acids; bacteria 

can also use nitrite (NO2
); animals can only use 

organic forms
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▪ Reservoirs: The atmosphere is the main reservoir 

(N2); other reservoirs include soils, aquatic 

sediments, surface and groundwater, and biomass

▪ Key processes: Biotic and abiotic fixation of N2, 

nitrification of NH4
+ to NO3

, denitrification of NO3
 to 

N2, and human inputs including agricultural 

fertilization, legume crops, and nitrogen gas 

emissions
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Figure 42.13-3
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Figure 42.13-3a
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Figure 42.13-3b

© 2016 Pearson Education, Inc.

Terrestrial
cycling

N2

Denitri-
fication

Decom-
position

Fixation
in root

nodules

Assimilation

NO3


Ammoni-
fication

Uptake of
amino acids

Nitrification

NH4
+

The nitrogen cycle



The Phosphorus Cycle

▪ Biological importance: Phosphorus is a major 

constituent of nucleic acids, phospholipids, and ATP

▪ Forms available to life: Phosphate (PO4 
3−) is the 

most important inorganic form of phosphorus

▪ Reservoirs: Sedimentary rocks of marine origin, the 

soil, oceans (dissolved form), and organisms

▪ Key processes: Weathering of rock, leaching into 

ground and surface water, incorporation into 

organic molecules, excretion by animals, and 

decomposition
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Figure 42.13-4
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Case Study: Nutrient Cycling in the Hubbard Brook 
Experimental Forest

▪ The mineral budget for six valleys in the Hubbard 

Brook Experimental Forest was determined by 

measuring input and output of key nutrients 

▪ Rainfall was collected to measure water and 

dissolved mineral inputs

▪ A dam was constructed to monitor water and 

mineral outputs
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▪ About 60% of precipitation exited through the 

stream and 40% was lost by evapotranspiration

▪ Internal cycling conserved most of the mineral 

nutrients in the system

▪ Small gains in nutrients were measured in most 

years
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▪ In another experiment, the trees in one valley were 

cut down, and the valley was sprayed with 

herbicides
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▪ Net losses of water were 3040% greater in the 

deforested site than in the undisturbed (control) site

▪ Nutrient loss was also much greater in the 

deforested site compared with the undisturbed site

▪ For example, nitrate levels increased 60 times in the 

outflow of the deforested site

▪ The amount of nutrients leaving a forest ecosystem 

is controlled mainly by plants
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Figure 42.14-3
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Concept 42.5: Restoration ecologists return degraded 
ecosystems to a more natural state

▪ Given enough time, biological communities can 

recover from many types of disturbances

▪ Restoration ecology seeks to initiate or speed up 

the recovery of degraded ecosystems

▪ Two key strategies are bioremediation and 

augmentation of ecosystem processes
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Figure 42.15
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Figure 42.15-1

© 2016 Pearson Education, Inc.

(a) In 1991, before restoration



Figure 42.15-2

© 2016 Pearson Education, Inc.

(b) In 2000, near the completion of restoration



▪ The long-term objective of restoration projects 

worldwide is to return an ecosystem as much as 

possible to its predisturbance state
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Kissimmee River, Florida

▪ Conversion of the Kissimmee River to a 90-km 

canal threatened many fish and wetland bird 

populations

▪ Filling 12 km of the canal has restored natural flow 

patterns to 24 km of the river, helping to foster a 

healthy wetland ecosystem
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Succulent Karoo, South Africa

▪ Overgrazing by livestock has damaged vast areas 

of land in this region

▪ Restoration efforts have included revegetating the 

land and employing sustainable resource 

management 
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Maungatautari, New Zealand

▪ Introduction of exotic mammals including weasels, 

rats, and pigs has threatened many native plant and 

animal species

▪ Restoration efforts include building fences around 

reserves to exclude introduced species
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Coastal Japan

▪ Destruction of coastal seaweed and seagrass beds 

has threatened a variety of fishes and shellfish

▪ Restoration efforts include constructing suitable 

habitat, transplantation, and hand seeding
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Bioremediation

▪ Bioremediation is the use of organisms to detoxify 

ecosystems

▪ The organisms most often used are prokaryotes, 

fungi, or plants

▪ These organisms can take up, and sometimes 

metabolize, toxic molecules

▪ For example, the bacterium Shewanella oneidensis

can metabolize uranium and other elements to 

insoluble forms that are less likely to leach into 

streams and groundwater
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Figure 42.17

© 2016 Pearson Education, Inc.

(a) Wastes containing uranium, Oak Ridge
National Laboratory

6

5

4

3

2

1

0
0 50 100 150 200 250 300 350 400

Days after adding ethanol

(b) Decrease in concentration of soluble
uranium in groundwater

C
o

n
c
e

n
tr

a
ti

o
n

 o
f

s
o

lu
b

le
 u

ra
n

iu
m

 (
m

M
)



Figure 42.17-2
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Biological Augmentation

▪ Biological augmentation uses organisms to add 

essential materials to a degraded ecosystem

▪ For example, nitrogen-fixing plants can increase the 

available nitrogen in soil

▪ For example, adding mycorrhizal fungi can help 

plants to access nutrients from soil
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Ecosystems: A Review

▪ Ecosystems represent dynamic interactions among 

living organisms and between biotic and abiotic 

components of the environment

▪ Energy transfer and nutrient cycling are key 

ecosystem processes
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